
 1

Code Inspections: An In Depth Review of Techniques

Daniel A. Carton

Department of Computer Science & Engineering,

University of South Carolina

cartond@email.sc.edu

May 2, 2016

ABSTRACT

Code inspections -- synonymously referenced as code reviews -- are systematic techniques to

analyze code quality and have strong support for their fundamental assistance of discovering faults,

transferring information, and promoting company norms. This paper seeks to answer questions (1) what are

code inspections and how are they implemented, (2) can every company benefit from code inspections, and

(3) how can the programming community improve the current code review process. Since its formation in

the late 70’s, various segments of the original code inspection process has been reviewed, scrutinized, and

reworked by many researchers and practitioners. Sections of the process such as team meetings are surveyed

to determine cost and effectiveness. I found that code inspections are implemented in a number of ways

amongst different companies. In addition, every research paper surveyed did not question the effectiveness

towards quality assurance that code inspections produce. Companies also implement a wide array of

techniques to ensure rigorous code reviews such as coverage and paired programming techniques. Lastly,

the software engineering community has improved techniques by creating tools to automate the inspection

process and help inspectors better organize concerns and changes.

1 INTRODUCTION

Code inspections -- synonymously referenced as code reviews -- are systematic techniques to analyze code

quality that have strong support for their fundamental assistance of discovering faults, transferring

information, and promoting company norms. There are a variety of techniques and variety of processes to

apply to software code to improve the quality of the resulting product. The main goal of any code review

is ultimately to improve the quality of the software produced. In the process, junior developers can consume

new knowledge such as company norms and new approaches to problems. After being implemented in

companies for over 40 years, code review continues to develop cleaner, more consistent, and more reliable

code.

2 USAGE

The undisputed value that code inspection improves quality of software is evident to all studies that were

surveyed in this paper. Code inspections are most helpful when more automated analyses are not applicable

to verify a property. An example would be checking whether a programmer used camelCase consistently

{ }

mailto:cartond@email.sc.edu

 2

through their application. Code reviews collaborative approach to reviewing is applicable to any kind of

software, because it relies on humans to carry out the task.

2.1 What is Addressed

Addressing issues like efficiency, scalability, and repetition methods, inspections encourage developers to

think with these goals in mind [18.3 Pezzè]. From personal experience, I believe this is best addressed as

the last step of a code segment. The first two being a working algorithm, faultless implementation, and

lastly efficiency. Furthermore code inspections can be implemented earlier than testing can be. This in turn

can create ease for the development team with more tests passing. In addition, unit tests can’t always be

applied to artifacts while inspections can.

3 METHODS

Whether the inspection process is classic or modern, it consists of three main phases: preparatory, review,

and follow-up [18.3 Pezzè]. Differences in the implementation of can

3.1 Process

The first step of the inspection process, or the preparatory phase, an inspector will make certain that the

segments to be reviewed are all satisfactory. After ensuring acceptable artifacts, the inspector will (1) assign

inspection roles, (2) acquire the information needed for the inspections and inspectors, (3) plan individual

activities of the inspector roles, and (4) schedule the inspection meeting [18.3 Pezzè]. As discussed in

section 3.2 and section 8, meetings are one of the big debates of research in code inspection techniques,

because of the time it requires to schedule a meeting amongst reviewers, and time wasted in the actual

meeting.

Succeeding the preparatory phase is the cardinal and most important step, the review phase. Classic

inspection techniques are based on checklists and communication from said checklists [18.4 Pezzè]. The

basic outline of a checklist item would range from checking class name capitalization to design decisions.

From checking if comments properly describe imported classes to the file footer’s revision log. The

reviewer can check either yes or no, and leave comments describing what they liked, didn’t like, or any

concerns. These systematic and consistent processes have proved to set a foundation of structure for

inspection teams [18.4 Pezzè]. A similar approach for review is to focus on user-flow or user-stories, as it

can discover new issues with the software.

Lastly, the third juncture of code review is the follow-up phase. This stage of the process is similar to getting

English teacher’s notes back from a rough draft. The code producer -- and sometimes testers-- receive a

summary of concerns from the review team. They subsequently solve each concern by either adding,

removing, or editing the segments. Follow-up yields situational results on a pre-review basis. For example,

if there are logical concerns, the review team might ask to re-review this developer’s code. This is expensive

as it starts the full three step process over. In contrast, it might be something simple like an uninitialized

variable or missing segment of code. These would not require consideration of re-review [18.3 Pezzè].

In Fagan’s popular 1976 publication discussing design and code inspection he includes a more in depth

five-step process; this is 32 years before Pezze describes the condensed three step process:

 3

Process

Operations

Objectives of the operation

1. Overview Communication: the author presents an overview of the scope and

purpose of the work product.

2. Preparation Education: reviewers analyze the work product with the goal of

understanding it thoroughly.

3. Inspection Find Errors: the inspection team assembles and the reader paraphrases

their work for the producer. Reviewers raise issues that are subsequently

recorded by the scribe.

4. Rework Rework: the author revises the and resolves errors to the product found

by inspection

5. Follow-up The moderator verifies the quality of rework and that all errors,

problems, and concerns have been resolved and decides if reinspection

is required.

Figure 1: Fagan’s five step inspection process. (3 Johnson, 11 Fagan)

3.2 Modern Approach

The modern approach to code review is not as tight or formal and utilizes more tools after over 40 years of

practice. The use of meetings is far less emphasized. In the 1998 paper Does Every Inspection Really Need

a Meeting , Johnson states that research concludes that meetings are a “costly component” shown to add

15-20% overhead onto the development process. He continues to conclude that meetings distract and

retracts employees from their current work (2 Johnson). By using automated software, inspectors can omit

meetings and leisurely address concerns in a comment-like setting that would highlight the line or lines of

code in question. In addition it is thought to be more “lightweight” than techniques used in early days of

inspection occurring in the 70s and 80s (1 Bird, 1 McIntosh). Most large companies -- Microsoft, Google,

and Facebook to name a few -- designate some level of code review and there are many ways to implement

review, various tools, and many life-cycle phases to perform inspection (1 Bacchelli).

For example, Google believes that its developers are best suited with a high priority of code review.

Although a lenient philosophy to allow developers to edit anything in the massive stack of Google’s code

repository, the inspection schema is not so relaxed. Every programmer’s change to code must undergo a

series of web-based tests and reviews with automatically generated test results such as “simulating tens of

thousands of users after just minutes of prep work” (Vallone). Likewise, it is interesting that Google also

requires that test code go through a set of test cases and the same code review process.

4 TECHNIQUES

Team members that are chosen for selection must have a balance of perspectives, background, and cost

[18.2 Pezzè].

 4

Similarly -- and applicable to any field of profession -- if one feels that there is an evaluation of their

performance being surveyed, the motivation to follow guidelines more specifically can skew results of their

average performance.

4.1 Group Inspections

4.1.1 The Classic Group Inspection

The classic approach for group inspection, dating back to the late seventies, focused on code artifacts with

four to six inspectors [18.2 Pezzè]. Inspectors will be selected in a way that balances perspectives,

background knowledge, and cost. Cost is important because a junior developer compared against a senior

developer will likely have found different results and process through the review differently -- at a different

cost. Again cost is a problem when the consideration of a larger inspection team is suggested to receive

different levels of expertise and varying perspectives. Furthermore, classic approaches did not span all the

approaches of a modern review. Efficiency was questioned during this period and eventually summoned an

array of research on the process.

4.1.2 The Review Meeting

Another process, known as The Review Meeting, is a formal technical review process that demands more

preparation from reviewers. The four roles of this method are producer, review leader, reviewers, and

recorder (234, Pressman). The producer develops the code and contacts the review leader establishing they

are ready for review. The leader then prepares materials to distribute to the review team. Reviewers, usually

two to three developers, are given appropriate materials. After spending no more than a couple hours on

the product the meeting is held. A recorder will log any issues brought forth from the review team during

this meeting. The big difference between these two group inspections is that the Review Meeting method

allows the producer to interact with the panel. This means the code manufacturer might try to sway the

panel in one direction, maybe not in the best intentions. A Microsoft team manager stated “discipline of

explaining your code to your peers that drives a higher standard of coding. I think the process is even more

important than the result” (5 Bacchelli).

In conclusion, the classic group inspection allows less tampering of panel judgement. Ultimately the

developer can only weep in hope for sympathy on their code review. This might motivate engineers to

perform better, but would discourage and scare others. The Review Meeting process is more unharming as

an activity. Although intentions of developers are studied later, for now the panel must trust the producer.

It is more conservative and a safer approach that does not result in belittlement to the engineer being

reviewed.

4.2 Pair Programming

Pair Programming, part of the Extreme Programming (XP) agenda, is associated with agile processes

utilizes two programmers side-by-side on one workstation [18.5 Pezzè]. Much like going through training

for a driver’s license, one person will steer while the other consults on actions being taken. It is evident to

see that if one of the developers is a junior or intern, there will be a large amount of knowledge transferred

and company norms inherited -- a topic studied further in Section 4.4.

Furthermore, because Pair Programming is part of the Extreme Programming itinerary it follows that it

takes a more modern approach to review. Instead of checklists, the review process is a dynamic entity

always being applied to segments. The chances that both developers do not adhere to a known practice,

norm, or coding principal is lowered, and thus surmises healthier code.

 5

During quantitative research on Pair Programming, the results are very promising. A substantial 90% of

professional programming that work in pairs said they enjoy their jobs more, than when they worked alone

(8, Williams). Furthermore, inconsiderate project managers that cast emotions aside will be satisfied to

know that paired programming also yields better, faster results after the adjustment time of operations (4,

McDowell, 4, Williams). This adjustment time, or change from unaccompanied to sociable programming,

has also been researched. It showed a decrease of 60% more programmer-hours than lone developers, to

15% programmer-hours after their first paired assignment.

Figure 2: Percentage of Test Cases Passed from page 6, Williams, showing the percentage of unit-

tests passed from a timed programming exercise. “Collaborative Teams”, or paired-programmers

show evidence of more sound programs than developers working alone.

4.3 Productive Learning

A third approach to code inspection techniques is to teach during the inspection process. For example, pair

programming assigning a senior engineer with a junior engineer. In this avenue of approach the senior

developer would keep authority and the junior developer would participate in the discussion [18.2 Pezzè].

The goal of this is to see the reason behind actions that come from someone holding more precedence in

the software, the senior developer in this case, for future problems like integration of other fragments of the

big-picture. Research based on over one thousand Microsoft support my hypothesis suggesting that this

junior developer, and all inspectors in this case, will learn from the inspection alone or with a senior

inspector and increase their social awareness, a knowledge transfer, and improved problem solving skills

(5 Bacchelli). Along with this conclusion, the vast array of developers were surveyed on what motivations

they had for code review. Interestingly enough, the data implies that knowledge transfer was more important

to reviewers than improving the development process and avoiding build breaks (figure 3).

 6

Figure 3: Developers’ motivations for code review from page 5 of Bacchelli’s “Expectations, outcomes, and

challenges of modern code review”

5 DISADVANTAGES

According to Pezze and Young, authors of Software Testing and Analysis, “inspection is not a full time

job” [18.2 Pezzè]. They further claim that a lot of research has shown that productivity drastically decreases

after two hours of work. Similarly a study focusing more on the economics of software engineering has

shown that there are large divergences between accuracy and productivity when looking at a single

individual (1 Da Cunha). A personal hypothesis to this is that, after time, the inspectors have caught up to

the most recent segments of code. Unless the inspector is at a company with hundreds of developers, he

will have no new code to review.

5.1 Expense

Machiavelli, attributed founder to modern political science, one said “Doctors say some infections at their

beginning are easy to cure, but difficult to recognize. But, when they are not first recognized and treated,

become easy to recognize but difficult to cure.” In other words that relate to software testing, the later in

the lifecycle a disease, or bug, is discovered results in the more opportunity for the disease, or bug, to affect

other segments of its source. Both cases end in a more costly resolution to fix.

Although inspections will yield a healthier end product in theory, they will take programmers, project

managers, and program testers away from their current tasks (2 Johnson). This of course promotes the use

of a devoted inspector, but as we discussed in section 4’s introduction the efficiency of a full time inspector

is not supported by research. In fact multiple studies suggest the opposite [18.2 Pezzè]. Furthermore, code

inspections are not incremental, or does not allow reinspection of code. In other words the reinspection of

code is “nearly as expensive as inspection of the original artifact” [18.3 Pezzè]. The basis for this argument

is that inspecting source code too early will have to undergo inspection again if it changes any main

functionality, something developers cannot consistently predict.

Moreover by testing too late, faults might have already been resolved by developers requiring proper

functionality. For example, think of a web-based application where many libraries are included throughout

 7

the application stack. A developer with incorrect data being displayed on the front end will be forced to

debug HTML, various JavaScript functions, ajax server calls, and the backend of the server. All because

something is not working properly. It is easy to argue that the correct implementation of inspection

throughout the stack at an earlier date would have avoided his troubles and efforts debugging other

components of code.

In conclusion, implementation of code inspection in respect to project cycle is a problem of intermittent, or

irregular, results. Research concludes that no matter when inspection is implemented, it will result in a

lower cost of removing and correcting faults later in development [1 & 11 Barnard, 18.1 Pezzè, 8 Boehm,

231 Pressman]. Some research indicates that as inspection efficiency increases, cost generally decreases

[8 Barnard]. Moreover, it is evident that assigning a low-level employee, like an intern, can achieve

training while also checking over source code. Discovering company norms and new approaches to problem

solving, the company will save money in training and inspection, although the inspection might not yield

astonishing results.

5.2 Fault Bounty

A reward mechanism might cause malicious behavior, like poor developers attitudes, from fault density or

fault discovery compensation proposals. Fault density is the idea that if a bug sneaks through the process

of inspection, it will be of higher value if found afterwards. A selfish engineer -- like the junior engineer

learning from the senior engineer previously mentioned -- might not engage in inspection discussions.

Subsequently on a later date the junior reveals the bug for praise and a reward. This progresses into the

senior developer receiving hassle.

In addition, fault discovery’s method of rewarding fault exposure will unintentionally identify inspectors

that review high quality, sound code [18.2 Pezzè]. Although this might come off as an approach to some,

it is clearly a disadvantage because of the unjust repercussions and malicious intent generated.

5.3 Self-Inspection

Any developer that has written a program can explain how familiar it is to start looking and inspecting at

your own code. This is supported by Pressman’s research where he states “although people are good at

catching some of their own errors, large classes of errors escape the originator more easily than they escape

anyone else” (230 Pressman). You don’t need to read the comments, you don’t need to look at the outside

function contexts, and you don’t require an explanation of why something was written a certain way. The

long hours, complex logic, and optimization a programmer commits to effort can consciously affect their

evaluation of their self, because they know the work deposited. So a project manager cannot simply ask

developers to review themselves. Similarly, self-evaluation can result in company norms not being

enforced. Pressman suggests that any reviews using a diverse group of people results in more uniform code

through the company, making it more manageable later in the software lifetime (230, Pressman). We can

conclude from his research that the idea of using a third party developer will find errors with more ease and

is suggested for the program review process.

6 MOTIVATION

Efficiency and cost are two burdens that all companies face. These are two main motivations behind a code

review. Project managers and senior developers alike can feel at ease with confidence of a process that

proves both qualities. In professions like sales, for example, efficiency of an employee can be measured by

their sales reports. Fault detection is not as easily scaled.

 8

One motivation to conduct research on code inspection is to discover a metric of efficiency of code

inspection. A technique is to compare inspection with unit, integration, and system tests. It is apparent that

a metric for unit testing efficiency is the cardinality of the tests per fault found. For manual inspection, a

metric is not so obvious. Barnard proposes using the amount of effort per fault detected as shown in figure

4; one of his nine metrics [10]. How do you measure human effort? Clearly factors like their experience

and familiarity effect their metric, although some studies. This solution-caused-problem, which Barnard

solves by using his equation, ultimately proves to be less efficient than all other methods of fault detection

[10 Barnard].

Average effort per fault detected: The average number of hours spent in inspection activities

by the inspection team for a single detected fault:

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑓𝑓𝑜𝑟𝑡 𝑝𝑒𝑟 𝑓𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 =
∑ 𝑰𝒏𝒔𝒑𝒆𝒄𝒕𝒊𝒐𝒏 𝒆𝒇𝒇𝒐𝒓𝒕 𝒊𝑵

𝒊=𝟏

∑ 𝑻𝒐𝒕𝒂𝒍 𝒇𝒂𝒖𝒍𝒕𝒔 𝒅𝒆𝒕𝒆𝒄𝒕𝒆𝒅 𝒊𝑵
𝒊=𝟏

Where N is the total number of inspections.

As with the average effort per thousand lines of code, this effort computation includes only

time spent by the inspection team preparing for the meetings, holding the meetings, and

correcting the detected faults. The computation includes faults of all severities.

Figure 4: How to compute the metric Average Effort per Fault Detected. Taken from page 3,

Barnard

7 RESEARCH

The first formal measures to ensure quality assurance were established at Bell Labs in 1916, and continue

to this day (228, Pressman). Now, quality assurance is measured through many techniques such as code

review.

7.1 Automation

As previously discussed on group inspections in section 4, and disadvantages in section 5, there is a large

amount of effort spent on scheduling, organizing, mediating, and conducting a group meeting. Research on

inspection automation, automating the process not the actual review, has promising progress in delegation.

In 2006, Python creator Guido van Rossum, delivered his first project at Google, a code review system

named Mondrian (Kennedy). With all of the code of Google living in a repository available to anyone

within the company, it was now exposed to their own internal tool to handle code review. Before Mondrian,

Google handled code review with a tool that started email threads. These word documents containing

concerns of code understandably can get out of control, lost, and updates of documentation could be

overlooked. Mondrian displayed a straightforward dashboard depicting code changes for the user to review,

and the user’s changes awaiting to be reviewed. In addition, the tool told user’s what their code review

accomplished such as: negative, positive, or neutral. By allowing team members to collaboratively work on

reviews on their own schedule,

The efficiency of Mondrian created a desire from the programming world, but Google’s internal tool was

not open source, like many of their other projects. This spawned the creation of one tool, Diffy, integrating

 9

with source control tool Git. Members of a repository can easily highlight and comment on lines of code.

Subsequently, the author can comment back with agreeance, or accept the request to modify the code.

7.2 Personality Correlation

Of course in an interview for any software engineering job the interviewees are assessed, at least a little, on

their personalities. What if personalities had more impact than just “water-cooler” conversations?1 Two

researchers in the Centre for Software Reliability at the University of Newcastle upon Tyne have starting

looking at why “some professionals show skill in debugging while others are less successful” with

developers’ personality types in particular (2 Da Cunha). This study used sixty-four second-year

undergraduate students inspecting two hundred and eighty two lines of Java code. Along with their

inspection results looking for sixteen faults, the students were rated on a scale of Sensing-Intuition (SN) vs

Thinking-Feeling (TF) of the Myers-Briggs Type Indicator for computing personality (2 Da cunha). The

results of the test suggests that NT, or intuition and thinking, personalities were best at finding faults.

Intuition and feeling type personalities came second. This suggests that developers that put intuition first,

then rationalize, should be deployed to code inspection teams. Another researcher implies that personalities

cause consequences on producers stating “people and egos” get involved in reviewing the product the

producer, instead of just the product (235, Pressman).

A company can deduce that inspection roles must capitalize on the strengths of their employees’

performance and personality. It does not make sense to assign a poor back-end developer to the back-end

developer position. Similarly, product managers should not ignore any tense or immature inner-office

relationships when assigning inspection roles.

7.3 Inspector Characteristics

During the review and interview of inspectors of five major open source software (OSS) organizations,

research has been conducted on the types of inspectors that review code. This study found two main

categories: reviewer and outsider (6, Rigby). These two classifications were expanded upon by interviewees

to add characteristics to learn about the interaction between them and developers. These characteristics led

to positive and negative personas of reviewers.

The three positive reviewer personas include objective analyzer, expert or fatherly adviser, and enthusiastic

support or champion. An objective analyzer is utilized for in depth analysis of the goals that inspection

attempt to accomplish. As discussed previously in the paper, code inspection greatly values the “expert or

fatherly adviser.” Junior developers can learn greatly from these personas and utilize the idea of transferred

knowledge such as that OSS community’s culture or historic inspection issues similar to the problem being

faced. The champion is a dedicated, enthusiastic, and passionate reviewer that takes responsibility where

no other team members approach.

The two negative personas include the grumpy cynic and the frustrated and resigned. A grumpy cynic is

typically depicted as a senior developer. For example consider a junior developer approaching a problem

in a way that has already proved to fail. A grumpy cynic, being around the project for a long period of time,

might lose temper that the new developer has not researched previously attempted results. Similarly short

tempered is the frustatedly resigned, because of the length of particular reviews. The researchers depict this

personality by simply ignoring an issue after they become uninterested with the discussion. Something

1. Some research has already looking into this, but this is not my main focus of this paper. Here are some more publications

found: Donaldson, Successful Software Development; Kidder, The Soul of a New Machine; Weinberg, The Psychology

of Computer Programming; Furnham, Do personality factors predict job satisfaction? Shneiderman, Software

Psychology: Human Factors in Computer and Information Systems;

 10

interesting that is pointed out is that “silence implies consent” in relation to forum discussions in the open

source community (6 Rigby).

Outsiders to the OSS development team were said to have positive and negative aspects resulting in debate

amongst developers to whether they are needed or not. The helpful outsiders were said to give real world

examples, clean bug reports, test system application program interface (API), and initial reviews. Most of

these tasks can be performed without code experience, and leads to believe that the cost of hiring such a

team would be low. Negative aspects of the outsiders consist of rude requests for fixes, infeasible objectives,

and overly specific use cases.

Regardless of the two categories, characteristics amongst reviewers still yielded helpful results to the

inspection process. Furthermore, both categories desired the more relaxed process of inspection that OSS

preferred.

7.4 Code Review Coverage

Something I studied extensively for this paper is code coverage as a review metric to delineate quantitative

results as opposed to the extravagant focus on qualitative research. One researcher stated “In reality, some

medium risk code might be high risk with respect to certain types of failures, and I would tailor the type of

testing (and the amount and rigor of code inspections) to the blend of risks“ (9, Marick). Although few of

the papers surveyed included insight with respect to code inspections, I think it is something that could be

utilized in this field as a metric to support its effectiveness of healthy code.

One such study found notable correlation between code review coverage in particular that more thoroughly

reviewed code and higher participation from inspectors produced a “significant link with [positive] software

quality” (9 McIntosh). Similarly, the three-way collaboration research in this paper concludes that modern

approaches to inspection provide positive outcomes on software standards. Amongst the three software

projects, Qt, VTK, and ITK, the study deduces that on average, projects contained up to five more defects

when inspection had poor participation from inspectors (2 McIntosh).

7.5 Open Source Software

Open source software is software that anyone can use, edit, distribute, and contribute to. Focusing just on

the contributing part, open source software encourages collaborative development. This means anyone can

edit the code and submit their changes for consideration. With this lies problems like malicious intent, but

we are interested in the productive changes to code. Like any big company, an open source software

organization would need to regulate things such as, testing and code review. How well can you hold code

inspection standards when your employee base can be potentially millions of internet users?

In over 400 individual reports of code inspections reviews for five high profile open source software

projects such as: Apache, the Linux kernel, and FreeBSD, a research team in Canada examined reports to

discover trends in how developers communicate during the review process (Rigby). In addition they sought

explanations on why patches are ignored, how stakeholders interact with review requests, and what happens

when there are too many opinions. In all five projects, the software review process consists of email based

communication. These emails could potentially contain pages of conversation, debate, explanations, and

code differences. Researchers proceeded to summarize these reports’ different abstract themes.

Patches, or bug fixes, that need to be addressed from inspection are not assigned to any single developer.

Instead the reviewer gets to choose what he/she decides to patch. One contributor interviewed states that

they review a specific segment “because of interest or experience in the subject area of the patch” (3, Rigby).

 11

This supports the idea of using inspectors with relatable experience. As discussed previously, this can cause

problems with cost when more than a few inspectors are necessary to review the work.

Another question seeking wisdom for the Canadian researching duo was “why are patches ignored?” and

“how much does it impact the project?” Large companies, such as Google, Microsoft, and similar must set

deadlines for their project inspection meetings to avoid wasting cost, but open source projects do not.

Without the pressure of traditional methodologies these asynchronous programming projects allow for more

relaxed inspection processes. A conclusion drawn was that although open source projects relax their

guidelines on timelines, the quality of review is not compromised (5, Rigby). Furthermore, it suggests that

setting a timeline goal might cause poor inspection results to accompany for interval objectives.

In conclusion of the open source research, investigators discovered that although scalability of code

inspection was hypothesized to cause problems, it did not. Additionally, open source software continues to

produce “mature and successful products” (10, Rigby)

8 FUTURE WORK

Future work and scrutiny of code inspection includes topics like: languages, ownership, scheduling, and

meeting effectiveness. This paper discusses a little on how an inspector can be subconsciously ignoring

code review on their own code. Analysis should be produced on this subject, because of the possibility to

compromise and wound software quality. Similarly I desire more examination of comparing inspection

results of independent program languages. For example, Python’s clean and easy syntax compared to Java’s

distinct set of rules.

8.1 Scheduling

Nearing the end of this paper, the question: “what stage should my team start worrying about inspections”

has not been answered. In layman’s terms, we don’t know. IBM argues to start late in the project. Their

logic summarized is that the project will be mature, the test cases will have less errors to correct and thus

less faults throughout the code source [Fagan]. Pezze and Young argue the opposite claiming “it must be

placed to reveal faults as early as possible, but late enough to avoid excessive repetition” [18.3 Pezzè]. This

is supported by section 4.1 of this document, exploring how repetitious inspections lead to a higher cost. In

addition, Barnard of AT&T suggest applying inspection as early as possible [8 Barnard]. He continues to

say the sooner it is implemented early to development cycle, the more successful the fault finding outcomes

will be. Constraints like team knowledge, project difficulty, and metrics to review are the main factors when

conducting research on scheduling. I believe that by running an experiment on a junior level computer

science class, with similarly knowledgeable teams, could produce significant results proving the

effectiveness of test case and inspection scheduling.

8.2 Meeting Effectiveness

Traditional approaches include steps for group meetings in the inspection process. As the internet has grown

and produced communication tools like Skype and development tools such as GitHub, a collaborative code

repository, there is an increase in remotely working developers. This brings a problem in physical meetings,

and if meetings in general are useful. “Perhaps the most fundamental procedural constant of Fagan

inspection and its many variants is the review meeting” (1 Johnson). Johnson and Tjahjono of the University

of Hawaii seek to rest the controversies around traditional review practices that require group meetings.

Their experiment contained twenty-four 3 person groups composed of student programmers.

 12

Conclusions of this experiment include insight of cost, preferences, accuracy, and effectiveness.

Interestingly enough, groups that held inspection meetings showed no significant difference in cost, but did

require more total effort and effort per defect. Individuals generated over 4 times more false positives than

the groups, on average (17, Johnson). As far as the effectiveness of performance on defect discovery,

traditional group based meetings did not gain support from the research. Instead, the research workers

support the proposal to improve non-meeting-based reviews.

9 CONCLUSIONS

In conclusion of this paper, it is evident that code inspections result in more reliable and mature software.

Regardless of cost, effort, or efficiency of how inspection is implemented, this is true. With research in

pair programming giving very positive results for code development in regards to the quality of code, it

should be implemented in schools and internship programs alike. In addition, review meetings should be

reevaluated on a per-company basis. Some organizations do not benefit from them. Code review is useful

for discovering faults, transferring information, and promoting company culture.

 13

Works Cited

1. Barnard, Jack, and Art Price. "Managing code inspection information." Software, IEEE 11.2

(1994): 59-69.

2. Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code

review." Proceedings of the 2013 International Conference on Software Engineering. IEEE

Press, 2013.

3. Boehm, Barry W. "Software Engineering Economics." Software Engineering Economics (2011):

n. pag. 28 June 1983. Web. 28 Apr. 2016.

4. Da Cunha, Alessandra Devito, and David Greathead. "Does personality matter?: an analysis of

code-review ability." Communications of the ACM 50.5 (2007): 109-112.

5. Fagan, Michael E. "Design and code inspections to reduce errors in program development." IBM

Systems Journal. Springer Berlin Heidelberg, 1978. 182-211.

6. Gerrit Code Review “Code Review for Git” https://www.gerritcodereview.com/index.md Web.

02 May 2016.

7. Johnson, Philip M., and Danu Tjahjono. "Does every inspection really need a meeting?."

Empirical Software Engineering 3.1 (1998): 9-35.

8. Johnson, Philip M. "Reengineering inspection." Communications of the ACM 41.2 (1998): 49-52.

9. Kennedy, Niall. "Google Mondrian: Web-based Code Review and Storage." Niall Kennedy

Google Mondrian Webbased Code Review and Storage Comments. N.p., 30 Nov. 2006. Web. 02

May 2016.

10. Marick, Brian. "How to misuse code coverage." Proceedings of the 16th International Conference

on Testing Computer Software. 1999.

11. McDowell, Charlie, et al. "The effects of pair-programming on performance in an introductory

programming course." ACM SIGCSE Bulletin. Vol. 34. No. 1. ACM, 2002.

12. McIntosh, Shane, et al. "The impact of code review coverage and code review participation on

software quality: A case study of the qt, vtk, and itk projects." Proceedings of the 11th Working

Conference on Mining Software Repositories. ACM, 2014.

13. Pezzè, Mauro, and Michal Young. Software Testing and Analysis: Process, Principles, and

Techniques. Hoboken, NJ: Wiley, 2008. Print.

14. Rigby, Peter C., and Margaret-Anne Storey. "Understanding broadcast based peer review on open

source software projects." Proceedings of the 33rd International Conference on Software

Engineering. ACM, 2011.

15. Vallone, Anthony. "The Google Test and Development Environment - Pt. 3: Code, Build, and

Test." Google Testing Blog. Google, 21 Jan. 2014. Web. 27 Apr. 2016.

16. Williams, Laurie, et al. "Strengthening the case for pair programming." IEEE software 17.4

(2000): 19.

